Algorithm: RWR,_ Cluster

Data: ListofQuerySets < {Listsof sets of start Nodes}
G < Global PairWise BLAST BitScore Graph

RWR Parameters:

restart__prob = probability of returning to the start nodes
threshold = repeat loop till L1 error < threshold
iter__cutof f = maximum number of iterations

K = Step size

Permutation Statistics parameters:

num_ replicates = number of replications

Result: ClusterMap :
Map(Query_Name — Map(Node — Scores(Statistics)))

begin
Cluster__Map + Map(Query_Name — Map(Node — Scores))

Random Walk Section:

forall the QuerieSet € ListofQuerySets

do

| Cluster_Map <+ RWR in threads(QuerySet, RW R__Parameters)
end

Permutation Statistics Section:
Population <+ Map(Query_Name —
Random__Permutation(ListofQuerySets, RW RParameters, num__replicates)

Summarize Statistics Section:

forall the QuerySet € Keys(Cluster__Map)

do

Cluster : Map(Node — Scores) < Cluster __Map(QuerySet)
forall the c.member : members of ClusterofQuerySet
do

|scores from Population(QuerySet)>Score|
size of Population

p.value <

maz.norm.score < Score normalized by max score in Cluster
species.norm.score —

Score normalized by mazx score within same species in Cluster

Update scores of Cluster with [score,p.value,norm.score,species.norm.score|

end

Update Cluster_ Map with Cluster

end

end

Algorithm: RW R_in_ threads

Data: Queries — {Setof start Nodes}
Global variables:
G < Global PairWise BLAST BitScore Graph
threshold = repeat loop till L1 error < threshold

iter__cutof f = repeat loop at least iteration threshold times K = Step size

Result: PostProbMap = Map(s — probability to endwalk at s),
s € Nodesin G withnon — zero post — probabilities

begin

LocalGraph < K — Step Neighborhood of Queries in G
W = Adjacency matriz from LocalGraph
index__name_map = Map(index of W — Query__Name)
name_index_map = Map(Query__Name — index of W)
N = Number of Start Nodes
QIndices — {Set of indices of Queries in W'}
p° {p?} for i €indices of W

0 ﬁ, ifi € QIndices
P 0, otherwise
normalize W

while |p'™t — p'| < threshold and iter < iter_cutoff do

| P =1 - r)Wp' 4 rp”
end
pfinal = ptt!

Create a post probability map from pfinel .
PostProbMap = Map(s — probability to end walk at s),

s € Nodesin Local Graph with nonzerovalues in ptT?

Update Concurrent HashMap holding Results
end

Algorithm: Permutation_ Statistics

Data: ListofQuerySets — {Listsof query sets}
Degree__Node Map (d — {Setof Nodeswith degree d})
Global variables:

G <+ Pairwise sequence similarity network

Result: Population_Map :
Map(Query_ Name — {population of post probability values}))

Get Sample Populations for the QuerySets:
SampleSpace < Get_SampleSpace__for_QuerySets Sets(ListofQuerySets)

Permutation Statistics Section:

Population__Map < Post rwr probability values from permuted queries

forall the queryset € ListofQuerySets
do

q.size < number of nodes in queryset g.name < name of queryset repeat
Perm_ Query +Randomly sample g.size nodes from SampleSpace[q.name]

Update Population_n < RW R in threads(Perm_ Query, RW R__Parameters)

rep + +
until rep < num_ replicates;

Update : Population__Map[n] < Population_n
end

Algorithm: Get_ SampleSpace__for_QuerySets

Data: ListofQuerySets — {Listsof QuerySets}
Degree_Map (d — {Setof Nodeswith degree d for G})

Result: SampleSpace__Map : Map(querysetid — Set of Nodes)

forall the queryset € ListofQuerySets
do

queryset.size < number of nodes in queryset
maz.degree < mazx(degree(nodes in queryset))

min.degree < min(degree(nodes in queryset))

SampeSpace < {Pooled sets of nodes from Degree_ Map[max.degree +

range] to Degree_ Map[min.degree — range|}

Add (querysetid — SampleSpace) map to SampleSpace_ Map
end

