
ListofQuerySets← {Lists of sets of startNodes}
G← Global PairWise BLAST BitScore Graph

restart prob = probability of returning to the start nodes

threshold = repeat loop till L1 error ≤ threshold

iter cutoff = maximum number of iterations

K = Step size

num replicates = number of replications

ClusterMap :

Map(Query Name→Map(Node→ Scores(Statistics)))

Cluster Map←Map(Query Name→Map(Node→ Scores))

QuerieSet ∈ ListofQuerySets

Cluster Map← RWR in threads(QuerySet,RWR Parameters)

Population←Map(Query Name→
Random Permutation(ListofQuerySets,RWRParameters, num replicates)

QuerySet ∈ Keys(Cluster Map)

Cluster : Map(Node→ Scores)← Cluster Map(QuerySet)

c.member : members of ClusterofQuerySet

p.value← |scores from Population(QuerySet)≥Score|
size of Population

max.norm.score← Score normalized by max score in Cluster

species.norm.score←
Score normalized by max score within same species in Cluster

Cluster

Cluster Map Cluster

RWR in threads

Queries→ {Set of startNodes}

G← Global PairWise BLAST BitScore Graph

threshold = repeat loop till L1 error ≤ threshold

iter cutoff = repeat loop at least iteration threshold times K = Step size

PostProbMap = Map(s→ probability to endwalk at s),

s ∈ Nodes inGwith non− zero post− probabilities

LocalGraph← K − Step Neighborhood of Queries in G

W = Adjacency matrix from LocalGraph

index name map = Map(index of W → Query Name)

name index map = Map(Query Name→ index of W)

N = Number of Start Nodes

QIndices→ {Set of indices of Queries in W}
p0 ←

{
p0i
}

for i ∈ indices of W

p0i =

⎧
⎨

⎩

1
N , i ∈ QIndices

0,

normalize W

|pt+1 − pt| ≤ threshold iter ≤ iter cutoff
pt+1 = (1− r)Wpt + rp0

pfinal = pt+1

Create a post probability map from pfinal :

PostProbMap = Map(s→ probability to endwalk at s),

s ∈ Nodes inLocalGraphwith nonzero values in pt+1

ListofQuerySets→ {Lists of query sets}
Degree Node Map (d→ {Set of Nodeswith degree d})

G← Pairwise sequence similarity network

Population Map :

Map(Query Name→ {population of post probability values}))

← Get SampleSpace for QuerySets

Population Map← Post rwr probability values from permuted queries

queryset ∈ ListofQuerySets

q.size← number of nodes in queryset q.name← name of queryset
Perm Query ←
Update Population n← RWR in threads(Perm Query,RWR Parameters)

rep++
rep ≤ num replicates

Update : Population Map[n]← Population n

Get SampleSpace for QuerySets

ListofQuerySets→ {Lists of QuerySets}
Degree Map (d→ {Set of Nodeswith degree d for G})

SampleSpace Map : Map(querysetid→ Set of Nodes)

queryset ∈ ListofQuerySets

queryset.size← number of nodes in queryset

max.degree← max(degree(nodes in queryset))

min.degree← min(degree(nodes in queryset))

SampeSpace← {Pooled sets of nodes from Degree Map[max.degree+

range] to Degree Map[min.degree− range]}
Add (querysetid→ SampleSpace) map to SampleSpace Map

